новодства – проблемы эффективности и качества: Сб. на-уч. тр. Подольск, 2010. Том 21. ЧЗ. С. 127...135.

### ВЫБОР ВЕНТИЛЯТОРА ДЛЯ ПНЕВМОТРАНСПОРТИРОВАНИЯ МАТЕРИАЛА В КОМБИКОРМОВОМ АГРЕГАТЕ

**В. Н. Нечаев**, аспирант, преподаватель кафедры «Механика и сельскохозяйственные машины»

**Аннотация.** В настоящее время в кормопроизводстве широкое применение находят комбикормовые агрегаты, основными рабочими элементами которых являются: дробилка концентрированных кормов, вентилятор и смеситель. Выбор типа вентилятора, обеспечивающего необходимые показатели работы в пневмосистеме агрегата, представляет большой практический интерес.

Радиальные вентиляторы с различной формой лопаток получили наибольшее применение в пневмосистеме кормоагрегатов.

**Ключевые слова:** комбикормовый агрегат, дробилка, вентилятор, лопатки вентилятора.

# CHOICE OF THE FAN FOR MATERIAL PNEUMOTRANSPORTATION IN THE UNIT OF COMBINED FORAGE

V. N. Nechaev, the post-graduate student, the teacher of chair «Mechanics and agricultural cars»

**Annotation.** Now in manufacture of forages wide application is found by units of the combined forages, the basic which working elements are: a crusher of the concentrated fo-

rages, the fan and the amalgamator. The choice of type of the fan providing necessary indicators of work in a pneumatic system of the unit, represents the big practical interest. Radial fans with the various form of shovels have received the greatest application in a pneumatic system units of the combined forages.

**The keywords:** the unit combined forages, a crusher, the fan, fan shovels.

В настоящее время в кормопроизводстве широкое применение находят комбикормовые агрегаты, основными рабочими элементами которых являются: дробилка концентрированных кормов, вентилятор и смеситель.

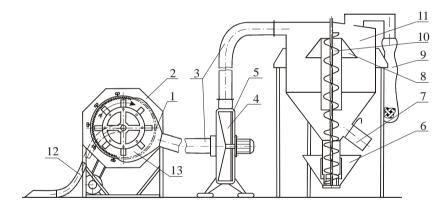



Рис. 1. Конструктивно-технологическая схема комбикормового агрегата:

- 1 решетка колосниковая, 2 дробилка зерна закрытого типа, 3 пневмотранспортирующие рукава, 4 крыльчатка вентилятора, 5 вентилятор, 6 бункер для премиксов,
- 7 выгрузной патрубок, 8 усреднительный конус,
- 9 фильтр, 10 шнек, 11 вертикально-шнековый смеситель, 12 загрузочное устройство, 13 дробильная камера

В комбикормовых агрегатах применяются дробилки закрытого типа с различными схемами установки центробежных вентиляторов: вентилятор установлен перед дробилкой; вентилятор смонтирован в корпусе дробилки; позади дробилки (рис. 1).

Центробежный вентилятор необходим для всасывания материала через загрузочное устройство в дробилку и последующей транспортировки измельченного материала в бункер-смеситель.

По принципу работы вентиляторы делятся на радиальные, осевые, диаметральные и др.[2].

Выбор типа вентилятора, обеспечивающего необходимые показатели работы в пневмосистеме агрегата, представляет большой практический интерес.

Многие НИЙ предлагают использовать радиальные вентиляторы из-за их простоты конструкции, меньшей стоимости и высокого КПД.[4].

Основным рабочим органом вентиляторов является лопаточное колесо. Н. П. Сычугов [1] отмечает, что при форме листовых лопаток рабочие колеса радиального вентилятора разделяются на три вида (рис. 2): с лопатками, загнутыми вперед по ходу вращения колеса ( $\beta_2 > 90$ °); с лопатками, загнутыми назад по ходу вращения колеса ( $\beta_2 < 90$ °); с лопатками, радиально оканчивающимися ( $\beta_2 = 90$ °). Применяются также рабочие колеса с профильными лопатками, загнутыми назад.

Если по форме лопатки имеют дугу окружности, то при определенных значениях наружного диаметра  $D_2$  колеса, их диаметра  $D_{\rm J}$ , угла  $\chi$  охвата и угла  $\beta_2$  установки на наружном диаметре внутренний диаметр  $D_1$  колеса, диаметр окружности  $D_0$  центров лопаток и угол  $\beta_1$  их установки связаны между собой зависимостями (рис. 2) [1]

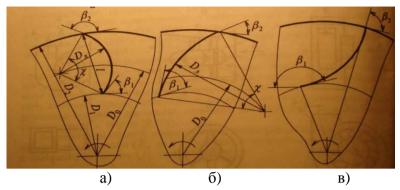



Рис. 2. Типы лопаток колеса: a) загнутые назад; б) загнутые вперед; в) радиально оканчивающиеся

$$D_1 = \sqrt{D_2^2 + 4 \cdot D_A^2 \cdot \sin^2\left(\frac{\chi}{2}\right) - 4 \cdot D_2 \cdot D_A \cdot \sin\cdot\left(\frac{\chi}{2}\right) \cdot \sin\left(\beta_2 - \frac{\chi}{2}\right)}, (1)$$

$$D_0 = \sqrt{D_2^2 + D_{\pi}^2 + 2 \cdot D_2 \cdot D_{\pi} \cdot \cos \beta_2}, \tag{2}$$

$$\beta_1 = \pi - \arccos\left(\frac{D_1}{2 \cdot D_R} + \frac{D_R}{2 \cdot D_1} - \frac{D_0^R}{2 \cdot D_R \cdot D_1}\right) \tag{3}$$

- М. И. Невельсон [3] тип лопаток характеризует в зависимости от угла выхода и общего геометрического профиля лопаток. При этом получаются следующие типы лопаток (рис. 3-5):
- 1) лопатки, загнутые назад, прямые ( $\beta_2 > 90$ °,  $\beta_1 > \beta_2$ ), лопатки, загнутые назад, изогнутые ( $\beta_2 > 90$ °,  $\beta_1 > \beta_2$  или  $\beta_1 < \beta_2$ );
- 2) лопатки радиальные прямые ( $\beta_1 = \beta_2 = 90$  °), лопатки радиальные изогнутые ( $\beta_2 = 90$  °,  $\beta_1 > \beta_2$ );
  - 3) лопатки, загнутые вперед ( $\beta_2 < 90^{\circ}$ ,  $\beta_1 > \beta_2$ ).

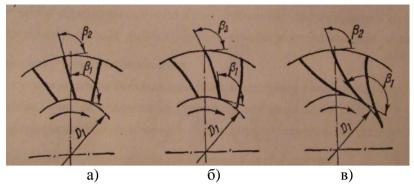



Рис. 3. Лопатки, загнутые назад: а) прямые; б) «выпуклые»; в) «вогнутые»

Лопатки, загнутые назад, (рис. 4) могут получиться прямыми в том случае, когда углы  $\beta_1$  и  $\beta_2$  удовлетворяют уравнению:

$$\frac{\sin(\beta_z - 90)}{\sin(270 - \beta_1)} = \frac{\sin(\beta_z - 90)}{\sin(\beta_1 - 90)} = \frac{R_1}{R_2}.$$
 (4)

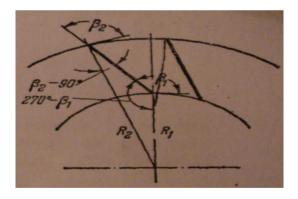



Рис. 4. Прямые лопатки, загнутые назад

М. И. Невельсон [3] отмечает, что прямые лопатки, загнутые назад, будучи весьма простыми по форме, явля-

ются в то же время вполне удовлетворительными с аэродинамической точки зрения.

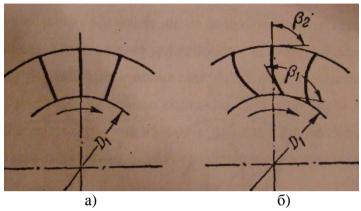



Рис. 5. Радиальные лопатки: а) прямые; б) изогнутые

Одним из важнейших параметров, определяющих процесс работы вентилятора, является число z лопаток колеса. Однако их воздействие на частицы воздуха определяется не только числом, но и формой межлопаточного канала, который характеризуется «густотой» решетки (рис. 2)

$$\tau = \frac{l - z}{\left(\pi \cdot D_2\right)},\tag{5}$$

где l – длина хорды лопатки

$$l = D_{\pi} \cdot \sin\left(\frac{x}{2}\right),\tag{6}$$

К тому же количество лопаток непосредственно влияет на шумовую характеристику вентилятора. Основная

частота шума от неоднородности потока равна произведению числа лопаток z колеса на частоту n ( $c^{-1}$ ) его вращения, т.е.  $f = n \cdot z$ . Этот шум по всасывающему и нагнетательному воздуховодам передается в помещения забора и выпуска воздуха, а также через стенки корпуса в окружающее пространство.

Радиальные вентиляторы с лопатками, загнутыми назад, шумят при одинаковой скорости  $u_2$  меньше, чем вентиляторы с лопатками, загнутыми вперед, поскольку у них скорости воздуха на выходе из межлопаточных каналов и в корпусе имеют большие значения. Однако, сравнивая значения коэффициентов давления разных вентиляторов, М. И. Невельсон [3] отмечает, что наиболее высокие значения коэффициента давления, т.е. наибольшее использование окружных скоростей, получаются при лопатках, загнутых вперед.

Несмотря на свою распространенность применения в серийных вентиляторах колес с лопатками, загнутыми вперед, существует причина, сужающая область их применения и связанная с значительным увеличением ширины таких лопаток и уменьшением их радиальной длины при переходе к большим значениям удельных чисел оборотов. Радиальные лопатки, являющиеся промежуточным типом между загнутыми вперед и загнутыми назад лопатками, в известной степени обладают преимуществами обоих типов. Эти лопатки, обеспечивая довольно высокие коэффициенты давления, в то же время могут быть выполнены неширокими и отличаются достаточно высоким КПД.

Применение профилированных лопаток обуславливает повышение давления, развиваемого вентилятором при сохранении высокого КПД. Н. В. Макаров, С. В. Белов, В. И. Фомин и ряд других ученых [5] вопрос повышения аэродинамической нагруженности рабочего колеса вентилятора, а следовательно, и повышения давления решают

установкой загнутых назад профильных лопаток, каждая из которых имеет со стороны рабочей поверхности в области выходной части накрылок, установленный с конфузорным зазором по отношению рабочей поверхности лопатки и имеющий вогнутую рабочую и выпуклую торцевую поверхности, причем внутри накрылка выполнена вихревая камера и ряд конфузорных каналов (рис. 6).

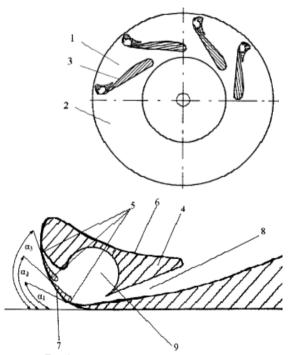



Рис. 6. Рабочее колесо и лопатка центробежного вентилятора (патент № 2390658): 1, 2 — несущий и покрывной диски соответственно; 3 — лопатка, загнутая назад; 4 — продольный накрылок; 5 — конфузорные каналы; 6, 7 — рабочая и выпуклая тыльная поверхность накрылка соответственно; 8 — конфузорный зазор; 9 — вихревая камера

Исследования [4] показали, что при оптимальной пневмозагрузке машины измельчаемый материал в дробильной камере перемещается рыхлым слоем толщиной 0,015...0,035 м в направлении движения молотков. Скорость слоя в зоне деки составляет 20...25 %, а в зоне решета — 45...48 % от скорости молотков. Крупные частицы оказываются на поверхности дробильной камеры, мелкие — на поверхности слоя. При таком взаиморасположении частиц в слое и зазоре между концами молотков и решетом 0,005...0,01 м крупным частицам трудно попадать под удары молотков. Кроме того, они закрывают отверстия решета, в результате чего ухудшаются условия отвода мелких частиц из дробильной камеры. Мелкие частицы на поверхности слоя все время подвергаются ударному воздействию молотков и переизмельчаются.

В связи с чем встает задача своевременного отвода мелкой фракции из зоны измельчения посредством оптимизации параметров работы вентилятора дробилки в составе комбикормового агрегата.

#### Список литературы

- 1. Сычугов, Н. П. Вентиляторы. Киров, 2000. 228 с.
- 2. Сычугов, Н. П. Транспортно-вентиляционные аэрожелоба: Учебное пособие. Киров: Вятская ГСХА, 2010. 264 с.: илл.
- 3. Невельсон, М. И. Центробежные вентиляторы. М.: Госэнергоиздат, 1954. 335 с.
- 4. Сысуев, В. А. Кормоприготовительные машины. Теория, разработка, эксперимент: В двух томах. / В. А. Сысуев, А. В. Алешкин, П. А Савиных.// Киров: Зональный НИИСХ Северо Востока, 2008. Т.1. 640 с.

5. Рабочее колесо центробежного вентилятора: патент № 2390658 Рос. Федерация. № 2008112791; заявл.02. 04. 2008; опубл. 27. 05. 2010. Бюл. № 15. 5 с.

# РАЗРАБОТКА ПРОИЗВОДСТВЕННОЙ ТЕХНОЛОГИИ ЛАЗЕРНОГО УПРОЧНЕНИЯ ПОРШНЕВЫХ КОЛЕЦ В СУДОРЕМОНТНОМ ПРОИЗВОДСТВЕ

- **С. С. Казаков**, ст. преподаватель кафедры «Тракторы и автомобили» НГИЭИ;
- **Ю. И. Матвеев,** д.т.н., профессор кафедры «ЭСЭУ» ВГАВТ

**Аннотация.** В статье приводится разработка технологии упрочнения поршневых колец в судоремонтном производстве. Разработан лазерный технологический комплекс и приспособления для обработки поршневых колец, приведены результаты натурных испытаний.

**Ключевые слова:** лазерное упрочнение, поршневое кольцо, износостойкость, надежность.

## DEVELOPMENT OF INDUSTRIAL TECHNOLOGY OF LASER HARDENING OF PISTON RINGS IN SHIP-REPAIR MANUFACTURE

- S. S. Kazakov, the senior teacher of the chair «Tractors and cars», NGIEI;
- Y. I. Matveev, the doctor of technical sciences, the professor of the chair «ESEU» VGAVT

**Annotation:** In article development of technology of hardening of piston rings in ship-repair manufacture is resulted.