А. Н. КОРОБКОВ, О. В. МИХАЙЛОВА

ОБОСНОВАНИЕ И РАЗРАБОТКА ТЕХНИЧЕСКИХ СРЕДСТВ С ИСТОЧНИКАМИ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ ДЛЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ПОСЛЕУБОРОЧНОЙ ОБРАБОТКИ СЕМЯН КОРМОВЫХ КУЛЬТУР

Ключевые слова: зерновой ворох, индуктор, магнитный порошок, магнитно-индукционный сепаратор, электромагнитные излучения, электромагнитный энергоподвод.

Аннотация. Создание магнитно-индукционного сепаратора предназначенного для улучшения качества очистки семян кормовых культур.

Для достижения поставленной цели решаются следующие научные залачи:

- 1. Разработать методику термообработки зернового вороха воздействием электромагнитных излучений в резонаторной камере.
- 2. Обосновать конструкционные и технологические параметры и режимы работы установок на основе системно-комплексного решения проблемы повышения качества послеуборочной обработки, всхожести и энергии роста семян кормовых культур.
- 3. Получить регрессионные зависимости, связывающие энергетические затраты на термообработку сырья с электромагнитным энергоподводом и снижение засоренности зернового вороха с ключевыми факторами, влияющими на технологический процесс.
- 4. Разработать и испытать семяочистительные установки для термообработки зернового вороха.
- 5. Оценить технико-экономическую эффективность применения установок в фермерских хозяйствах.

Объектом исследования являются: модификации магнитноиндукционных сепараторов и процесс технологического воздействия на зерновой ворох; семена кормовых культур.

Предметом исследования является выявление закономерностей процесса подсушивания и очистки семян кормовых культур в непрерывном режиме.

[©] Коробков А. Н., Михайлова О. В., 2014

Практическую значимость представляют: модификации сушильно-семяочистительных машин, позволяющие улучшить качество послеуборочной обработки семян кормовых культур; выводы, полученные по результатам исследования.

Научную новизну представляют:

- методика термообработки зернового вороха воздействием электромагнитных излучений в рабочей камере;
- индуктор, состоящий из одной индукционной поверхности, второй индукционной поверхности, проводящей электрический ток, будет являться смесь магнитного порошка, семян, соли и воды;
- математические выражения, позволяющие обосновать конструкционные и технологические параметры и режимы работы установок, на основе системно-комплексного решения проблемы повышения качества послеуборочной обработки, всхожести и энергии роста семян кормовых культур;
- закономерности влияния режимов работы установок на динамику засоренности и сушки зернового вороха;
- разработанные модификации магнитно-индукционных сепараторов зернового вороха;
- рациональные режимы и комплекс конструктивнотехнологических параметров, обеспечивающих очистку и подсушку зернового вороха.

Исследования проводятся в соответствии с Государственной программой развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия на 2013–2020 годы.

Проанализировав существующие аналоги, нами предлагается несколько модификаций магнитно-индукционного сепаратора.

Таблица 1 – Модификации магнитно-индукционного сепаратора.

Ленточная магнитная семяочистительная машина

Расход магнитного порошка 1–2 %; расход воды для увлажнения семян 0,5–2 % от веса семян

Однобарабанная магнитная машина ЭМС-1

Число оборотов в минуту приводного вала 400, барабана – 40. Производительность машины 160–200 кг/ч

Машина для очистки и сортировки семян К 541 Super

Машины выпускаются производительностью (по пшенице): первичная очистка 1,75 т/ч, семенная очистка 1,25 т/ч

Магнитно-индукционный сепаратор предназначен для очистки семян кормовых культур от сорных примесей в поточном режиме. Установка обеспечивает регулирование дозы воздействия в широком диапазоне за счет изменения мощности источников энергии и скорости перемещения обрабатываемого продукта по поверхности магнитно-индукционного барабана. Сепаратор работает следующим образом: семена из загрузочного бункера поступают в верхнюю камеру смешивающего устройства и перемещаются наклонными лопатками вращающегося вала к противоположной стороне, попутно смешиваясь с рассолом. Дозатор подает магнитный порошок в поток семян. При транспортировке в верхней и нижней камерах семена смешиваются с порошком, который обволакивает семена сорных растений, имеющих шероховатую поверхность, придавая им магнитные свойства. Семена кормовых культур, имеющие гладкую поверхность, порошком не обволакиваются. Из нижней камеры смешивающего устройства смесь поступает в наклонный

шнек и загружается на вибрационный распределитель. Семена, не покрытые порошком, соскальзывают ещё в зоне действия магнитноиндукционного барабана, остальные падают при выходе из этой зоны [1, с. 83–87].

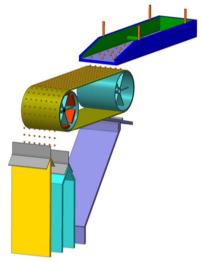


Рисунок 1 – Модификации магнитно-индукционного сепаратора

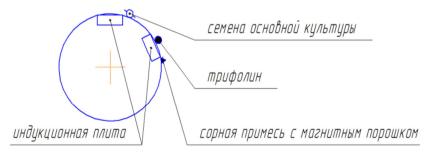


Рисунок 2 – Модификация магнитно-индукционного сепаратора

С помощью классификатора материал разделяется на 3 фракции: чистые полноценные семена; щуплые семена и малошероховатые семена сорняков; загнившие, повреждённые вредителями, битые, мятые семена, шероховатые семена сорняков и излишки порошка. Нами предлагается

несколько модификаций сепаратора. Например, в первом магнитном барабане чередуясь посегментно расположить индукционные поверхности. Основные узлы сепаратора: 1 — вибрационный желоб; 2 — направляющее устройство; 3 — магнитно-индукционный барабан; 4 — ограничитель рабочей ширины; 5 — сборник; 6 — щиток; 7, 8, 9 — емкости для семян I, II, III сортов соответственно.

Качественная очистка семян кормовых культур обеспечивается за счет магнитно-индукционного воздействия на зерновой ворох.

Индукционные поверхности способны обеспечить высочайшую точность нагрева, с точностью до градуса, и любое изменение температуры происходит мгновенно. В каком-то смысле это тоже не что иное, как трансформатор: его первичной обмоткой является индукционная катушка, по которой протекает электрический ток. Его частота намного выше тех 50 Гц, которые есть в каждой розетке, и составляет 20–60 кГц. А вторичной обмоткой трансформатора в нашем случае будет являться смесь магнитного порошка, рассола и семян. В магнитном порошке наводятся токи индукции, которые нагревают его, а заодно и семена. Нет никакой передачи тепловой энергии снизу вверх, а значит, нет и тепловых потерь. С точки зрения эффективности использования потребляемой электроэнергии индукционная поверхность выгодно отличается от всех других: нагрев происходит быстрее, а КПД нагрева выше [3 с. 254–277].

Главным условием применения индукционной поверхности является применение именно ферромагнитной смеси, как проводящей, неразрывной среды. Для увеличения ее проводимости нами проведен эксперимент по изучению концентрации соли в распыляемом рассоле. Оптимальная масса соли на 30 граммов трифолина составляет 5 граммов. Именно при таком сочетании происходи нагрев смеси. Нагрев проводили при следующих мощностях: 400, 1000, 1200, 1500 Вт. Удельная мощность при нагреве составляла 4 Вт/г, 10 Вт/г, 12 Вт/г, 15 Вт/г.

Для определения оптимальной удельной мощности и продолжительности нагрева мы, пользуясь лабораторной СВЧ-установкой, индукционной поверхностью, секундомером, термопарой и спиртовым термометром, исследовали динамику нагрева различных сочетаний компонентов (в семи повторностях). Данные кривые построены по средним значениям температур нагрева, найденным путем повтора опыта. В нашем случае нагрев проводился семь раз в каждом промежутке времени и при необходимой мощности. Масса образца 50 граммов.

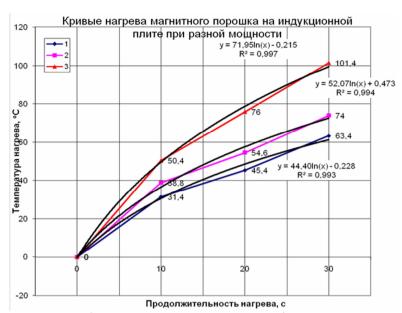


Рисунок 3 — СВЧ нагрев смеси люцерны и трифолина при разных удельных мощностях: 1) $P_{yg} = 2$ BT/г; 2) $P_{yg} = 4$ BT/г; 3) $P_{yg} = 6$ BT/г

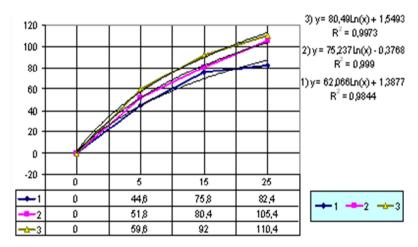


Рисунок 4 — СВЧ нагрев смеси люцерны и трифолина при разных удельных мощностях: 1) $P_{yg} = 2$ BT/г; 2) $P_{yg} = 4$ BT/г; 3) $P_{yg} = 6$ BT/г

Нами получены следующие результаты:

- 1) Для клевера и для люцерны при удельных мощностях 1,2 Вт/г, 5 Вт/г, 8 Вт/г продолжительность сушки составит 30 секунд; (магнитно-индукционная конструкция);
- 2) Для клевера и для люцерны при удельных мощностях 2 Вт/г; 4 Вт/г; 6 Вт/г продолжительность сушки составит 20 секунд (СВЧ-магнитная конструкция).

Для подтверждения соблюдения температурного режима нами была проведена тепловизионная съемка всех компонентов смеси.

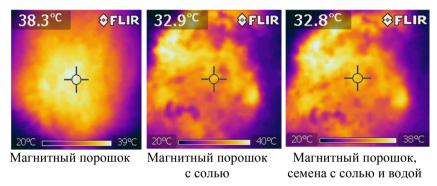


Рисунок 5 – Показатели тепловизора і-3

Применение тепловизора позволило точно выявить температуру в различных сочетаниях компонентов. Мы видим, что нагрев происходит равномерно, в то же время не превышается допустимая температура в 35 градусов Цельсия, т. е. сохранены посевные качества семян.

Рисунок 6— Контрольно-измерительная аппаратура и компоненты смеси

Рисунок 7— Контрольно-измерительная аппаратура

Посевные качества обработанных семян клевера и люцерны проверялись в «Россельхозцентр» Нижегородской области. Средний процент прорастания клевера 82,8 %.

Ожидаемые нами результаты:

- 1. Методика термообработки зернового вороха воздействием электромагнитных излучений в резонаторной камере.
- 2. Обоснованные конструкционные и технологические параметры и режимы работ установок на основе системно-комплексного решения проблемы повышения качества послеуборочной обработки, всхожести и энергии роста семян кормовых культур.
- 3. Регрессионные зависимости, связывающие энергетические затраты на термообработку сырья с электромагнитным энергоподводом и снижение засоренности зернового вороха с ключевыми факторами, влияющими на технологический процесс.
- 4. Разработанные и испытанные семяочистительные установки для термообработки зернового вороха.
- 5. Оценка технико-экономической эффективности применения установок в фермерских хозяйствах.

Предполагаемая коммерческая востребованность магнитно-индукционного сепаратора

Подводя итоги данного исследования, можно сделать вывод о том, что совмещение отдельных узлов и разных машин, используемых при магнитной очистке и сушке семян, позволит интенсифицировать процесс заготовки семян кормовых культур, уменьшить площадь занимаемую оборудованием, снизить расходы на покупку сушилки, и как следствие сократить энерго-, трудозатраты. Поэтому данное исследование имеет

научную и практическую значимость как для учебных заведений, так и для сельскохозяйственных предприятий [2, с. 261–268].

Таблица 2 – Значимость исследования

заведений сельскохозяйственного направления	Лабораторные стенды по дисциплинам: «Процессы и аппараты», «Оборудование и автоматизация перерабатывающих производств», «Электротехнологии», «Технологическое оборудование для переработки сельскохозяйственной продукции»
Сельскохозяйственные предприятия, крестьянско-фермерские хозяйства, индивидуальные предприниматели, специализирующиеся на переработке продукции	Образцы установок с источниками электромагнитных излучений для технологического процесса послеуборочной обработки семян кормовых культур

Таблица 3 – План создания

Этап	Наименование этапа	Ожидаемые результаты работ	Срок исполнения (начало- окончание)
1	Общие пара-	Разработка конструк- торской документации	январь 2014 – ноябрь 2014
	режимы рабо-	на изготовление установки с обоснованием	
	индукционно- го сепаратора	режимов и параметров работы.	
2	Апробирование и испытание установок в производственных условиях.	Снижение энергетиче- ских затрат и улучшение качества сушки и очистки семян кормовых культур в разработанных уста- новках.	январь 2015 — ноябрь 2015

Результаты проделанной работы:

- проведен обзор существующих магнитных семяочистительных машин:
- изучено устройство и принцип работы магнитной семяочистительной машины;
- изучено воздействие альтернативных методов сушки (с использованием индукционного нагрева) семян кормовых культур;
- проведены экспериментальные исследования, позволяющие выявить оптимальную удельную мощность воздействия и продолжительность воздействия (использование генераторов электромагнитных излучений 2450 МГц и индукционных поверхностей, электронных весов, термопары);
- проведены экспериментальные исследования, позволяющие выявить оптимальную температуру нагрева семян до 35 градусов Цельсия (тепловизионная съемка);
- проведены экспериментальные исследования всхожести семян (средняя всхожесть составляет 82,5 %), энергии их роста (получено более 20 актов, на каждую группу обработки семян).
- применена оценка технико-экономической эффективности установок в фермерских хозяйствах.

ЛИТЕРАТУРА

- 1. Михайлова О. В., Коробков А. Н., Шестакова О. А. Технология магнитной сепарации семян кормовых культур // Вестник НГИЭИ. 2012. № 8 (15). С. 83–87.
- 2. Михайлова О. В., Коробков А. Н., Шестакова О. А. Результаты исследования магнитно-индукционной обработки семян кормовых культур // Материалы Международной научно-практической конференции студентов и молодых ученых (20–25 мая 2012 г.) Княгинино: НГИЭИ. 2012. С. 261–268.
- 3. Слухоцкий А. Е., Немков В. С., Павлов Н. А., Бамунэр А. В. Установки индукционного нагрева. Л.: Энергоиздат. 1981. 452 с.

JUSTIFICATION AND DEVELOPMENT OF TECHNICAL MEANS WITH ELECTROMAGNETIC RADIATION SOURCES FOR THE TECHNOLOGICAL PROCESS OF POST-HARVEST PROCESSING FORAGE CROPS

Keywords: grain heap, electromagnetic radiation, electromagnetic energy supply, magnetic induction separator, inductor, magnetic powder.

Annotation. The article describes the creation of magnetic induction separator designed to improve the quality of peeling food crops.

КОРОБКОВ АЛЕКСЕЙ НИКОЛАЕВИЧ – преподаватель кафедры «Электрификация и автоматизация», Нижегородский государственный инженерно-экономический институт, Россия, Княгинино, (aleksey.korobkov52@mail.ru).

KOROBKOV ALEXEI NIKOLAEVICH – lecturer of the chair «Electrification and Automation», Nizhniy Novgorod state engineeringand economic institute, Russia, Knyaginino, (aleksey.korobkov52@mail.ru).

МИХАЙЛОВА ОЛЬГА ВАЛЕНТИНОВНА – профессор кафедры «Электрификация и автоматизация», Нижегородский государственный инженерно-экономический институт, Россия, Княгинино, (ds17823@yandex.ru).

MIHAILOVA OLGA VALENTINOVNA – professor of the chair «Electrification and Automation», Nizhniy Novgorod state engineering and economic institute, Russia, Knyaginino, (ds17823@yandex.ru).